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Abstract We consider an one-dimensional nonlocal hyperbolic model for group
formation with application to self-organizing collectives of animals in homogeneous
environments. Previous studies have shown that this model displays at least four com-
plex spatial and spatiotemporal group patterns. Here, we use weakly nonlinear analysis
to better understand the mechanisms involved in the formation of two of these pat-
terns, namely stationary pulses and traveling trains. We show that both patterns arise
through subcritical bifurcations from spatially homogeneous steady states. We then
use these results to investigate the effect of two social interactions (attraction and
alignment) on the structure of stationary and moving animal groups. While attraction
makes the groups more compact, alignment has a dual effect, depending on whether
the groups are stationary or moving. More precisely, increasing alignment makes the
stationary groups compact, and the moving groups more elongated. Also, the results
show the existence of a threshold for the total group density, above which, coordinated
behaviors described by stationary and moving groups persist for a long time.
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1 Introduction

The study of animal aggregations (such as schools of fish, swarms of insects, etc.) has
become a topic of recent interest [15,19,31,35,40]. One of the most studied aspects
of these aggregations is the spatial and spatiotemporal patterns they form. Examples
of such patterns range from stationary aggregations formed by resting animals, to
zigzagging flocks of birds or milling schools of fish. To gain insight into how dif-
ferent mechanisms influence pattern formation, scientists use mathematical models
motivated by biologically based hypotheses. The models are either individual-based
models [9,11,12,16,23,34,39,40,46,47] or continuum models [3,13,14,26,30,31,37,
44,45].

The majority of the individual-based models investigate numerically the phase
transitions between different behaviors [1,11,12,47]. For example, Czirók et al. [11]
derived a one-dimensional model that exhibits a transition from a disordered ran-
dom behavior to a semizigzag behavior, which, for large time, evolves into a moving
pulse. The authors also derived a continuum model which shows similar behavior [11].
However, for individual-based models there are no analytical techniques to unders-
tand such transitions. This lack of techniques causes difficulties in understanding
the structure of these transitions, as well as which parameters determine these tran-
sitions: density [9], noise [11], or a combination of multiple parameters [18]. An
illustrative example is the model by Vicsek et al. [47], which, without an analyti-
cal framework, was initially thought to exhibit a continuous transition from disor-
dered to ordered motion (implying a supercritical bifurcation). Later, this transition
has been shown to actually be discontinuous [18] (implying a subcritical bifurca-
tion). Further results showed that the transition can be either continuous or dis-
continuous, depending on the way in which the noise is introduced [1]. However,
the applicability of the results presented in [1] to the Vicsek model continues to be
debated [7].

While the individual-based approach lacks a framework to analyze these transi-
tions, for continuum models one can employ well-established analytical techniques to
investigate them. In spite of these tools, there are not many articles investigating the
various spatial and spatiotemporal patterns displayed by different continuum models
that study animal aggregations. In particular, there are almost no results concerning the
effects of the density and different model parameters on the structure of these group
patterns. One exception is the model introduced in [45], which discusses the effect of
the population size on the amplitude of stationary pulses.

This article attempts to address this lack of results. In particular, we will use
analytical and numerical techniques to investigate some of the patterns exhibited by a
nonlocal hyperbolic model for group formation that has been proposed in our previous
work [13,14]. The model introduces a general framework to incorporate different
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communication mechanisms to study the formation of animal groups. In particular,
these communication mechanisms influence the social interactions between indivi-
duals, namely attraction towards other members of the group that are far away, repul-
sion from those that are nearby, and a tendency to align with those neighbors that
are at intermediate distances. The resulting model, which actually comprises many
submodels, is very rich in spatial and spatiotemporal patterns. Numerical simulations
have shown at least 10 different patterns, including stationary and traveling pulses,
traveling trains, zigzag pulses, breathers, ripples, and a new pattern we called feathers.
However, an analytical investigation of the patterns near bifurcation points is lacking.
We begin to address this issue in the following.

For simplicity, we focus here only on one of the submodels introduced in [13].
The analysis in this article complements the work done in [14], which analyzes a
similar submodel. More precisely, we will assume that for attractive and repulsive
interactions, information received from all neighbors is used, whereas for alignment,
only the information received from those neighbors moving towards an individual is
used. It has been previously observed that this particular model displays at least four
different spatial and spatiotemporal patterns: stationary pulses, traveling trains, semi-
zigzag pulses, and traveling pulses [13]. Here, we will investigate the emergence of
two of these patterns: stationary pulses and traveling trains. Both patterns occur near
bifurcation points of the spatially homogeneous steady states.

Because of the nonlocal interactions, it is difficult to understand this model intuiti-
vely. One way to understand the obtained patterns is by a combination of numerical
analysis, linear and weakly nonlinear analysis, and symmetry theory. Here we focus
on numerical, linear, and weakly nonlinear analysis to investigate the stationary pulses
and the traveling trains.

Note that a similar model was briefly analyzed in [14], where the authors investiga-
ted it via linear stability analysis. The linear stability analysis gives only information
about the wavenumber that is most likely to emerge, and the parameter space where this
will happen. However, the patterns observed during the numerical simulations are the
result of the interactions between the nonlocal terms. Therefore, to better understand
these patterns and, in particular, to reveal the complex structure of the possible attrac-
tors, we investigate the effect of these nonlinear terms. We use this analysis to answer
the following biological questions: (1) How does the transition between disordered
and ordered behaviors depend on the population density, or on social interactions? (2)
Does this transition exhibit hysteresis, as observed in some individual-based models
(see, e.g., [1,5])? (3) What is the effect of the alignment interactions on the structure
of the animal groups?

We should mention that some of these questions can be somewhat answered by
intensive numerical simulations. For example, it was observed in [14] that the tran-
sition between different types of ordered behavior can be explained in terms of the
magnitude of the social interaction (e.g., attraction). However, the role of the popu-
lation density on these transitions, as well as on the transition from disorder to orde-
red behavior, has not been investigated yet. Also, it should be mentioned that the
results of the numerical simulations do not always offer a clear understanding of the
mechanisms that govern such transitions, as shown by some individual-based models
[1,18,47].

123



40 R. Eftimie et al.

In the following, we will use the classical Landau–Stuart stability theory [28,43] to
analytically investigate the effects of the nonlocal interactions on the structure of two
types of patterns: stationary pulses and traveling trains. We derive amplitude equations
that govern the behavior of the solutions for large time, and investigate the stability of
these solutions. The results show that both stationary pulses and traveling trains arise
through subcritical bifurcations. We should mention here that the symmetries of the
system can restrict the form of the solutions, as well as the amplitude equations (e.g.,
real versus complex amplitude equations) [17]. However, understanding the stability
of the new bifurcating solutions depends on the values of the coefficients that appear
in these equations, which necessitates detailed calculations. We then compare the
analytical results for the amplitude of the solutions with the numerical results. Using
the bifurcation diagrams for these amplitudes, we answer the biological questions we
mentioned previously. In particular, we show that while increasing attraction leads
to denser groups, increasing alignment has a dual effect, depending on whether the
groups are stationary or moving. More precisely, increasing the alignment interaction
makes the stationary groups more compact, and the moving groups more elongated.
Moreover, we show the existence of a threshold for the total group density, above
which coordinated behaviors, described by stationary and moving groups, are possible
and persist for a very long time. In other words, groups that have the initial density
below this threshold will disperse, while groups with densities above the threshold will
become more dense, and persist for a long time. The analytical results also show that
there is competition between the turning behavior and the magnitude of the alignment
interaction that leads to the formation of stable aggregations. More precisely, in case of
high-turning rates, increasing alignment decreases the amplitude of the perturbations
required to destabilize the homogeneous solution. In case of low-turning rates, the
situation is opposite: increasing alignment decreases the amplitude of the required
perturbations.

The paper is organized as follows. In Sect. 2, we briefly describe the nonlocal
hyperbolic model that we will analyze, and discuss the existence of solutions. In Sect. 3,
we investigate the spatially homogeneous steady states and their stability via a linear
stability analysis. In Sect. 4, we use weakly nonlinear analysis to study the amplitude
of spatially and spatiotemporally heterogeneous solutions near bifurcation points. We
conclude with a general discussion in Sect. 5. In the Appendix, we briefly introduce a
two-dimensional analogue to the one-dimensional model introduced in [14].

2 Hyperbolic model and the existence of solutions

In [13,14] the authors introduced the following one-dimensional hyperbolic model
to describe the evolution of densities of right-moving (u+) and left-moving (u−)
individuals:

∂t u
+(x, t) + ∂x (γ u+(x, t)) = −λ+(u+, u−)u+(x, t) + λ−(u+, u−)u−(x, t),

∂t u
−(x, t) − ∂x (γ u−(x, t)) = λ+(u+, u−)u+(x, t) − λ−(u+, u−)u−(x, t), (1)

u±(x, 0) = u±
0 (x), x ∈ R,
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Weakly nonlinear analysis of a hyperbolic model 41

with the turning rates defined as

λ±(u+, u−) = λ1 + λ2h(y±[u+, u−]). (2)

Here γ is the constant speed, while the two constants λ1 and λ2 represent a “base-line”
turning rate and a bias turning rate, respectively. For a biologically realistic case,
the turning function h should be a positive, increasing, and bounded functional that
depends on the signals perceived from neighbors: y±. These signals are emitted by
neighbors moving to the right (u+) and to the left (u−):

y±[u+, u−] = ±qr

∞∫

0

Kr (s) (u(x ± s, t) − u(x ∓ s, t)) ds

∓qa

∞∫

0

Ka(s) (u(x ± s, t) − u(x ∓ s, t)) ds

±qal

∞∫

0

Kal(s)
(
u∓(x ± s, t) − u±(x ∓ s, t)

)
ds. (3)

We define the total density as u(x, t) = u+(x, t) + u−(x, t). The constants qr , qa ,
and qal represent the magnitudes of three social interactions: repulsion, attraction, and
alignment, respectively. In (3), we assume that, for attractive and repulsive interactions,
information received from all neighbors (u(x + s, t) and u(x − s, t)) is used. For
alignment interactions, on the other hand, only the information received from those
neighbors moving towards a particular individual (u−(x + s, t) and u+(x − s, t)) is
used. A more detailed description of these equations can be found in [14].

Throughout this paper, the interaction kernels K j , j = r, al, a, are described by:

K j (s) = 1√
2πm2

j

exp
(
−(s − s j )

2/(2m2
j )

)
, j = r, al, a. (4)

Here s j , j = r, al, a, define the spatial regions for repulsive, alignment, and attractive
interactions, while m j = s j/8 define the width of these regions. We choose the
constants m j such that the support of more than 98% of the mass of the kernels
is inside the interval [0,∞). Note that in [14], the kernels had overlapping ranges.
The translated Gaussian kernels (4) we use in this article have quite distinct ranges,
which allows for better comparison with individual-based models. In Sects. 3 and 4,
we investigate a specific case where the positive, bounded, and increasing turning
functions are defined by

h(y±[u+, u−]) = 0.5 + 0.5 tanh(y±[u+, u−] − y0). (5)

Note that there are many other possible choices for the turning functions (e.g., pie-
cewise linear functions). However, it is beyond the scope of this paper to investigate
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them. The constant y0 is chosen such that for y±[v] = 0 (that is, no signals), the value
of λ±(0) is determined only by λ1.

It should be mentioned that the full system (1)–(4) has 14 parameters. Since the
nondimensionalization does not significantly reduce the number of parameters (we
still have ten parameters), we simply work with the dimensional system.

A first result refers to the existence of weak solutions of system (1). In the mathe-
matical literature, there are results for the existence and uniqueness of solutions for
hyperbolic systems of the form (1), with local turning rates defined as λ+(u+, u−) =
λ−(u−, u+) (see [25]), or λ± = λ±(s, sx ), where s is an external stimulus that depends
on u± (see [22]). In contrast to these cases, the model discussed here has nonlocal
turning rates.

If we assume that the initial data is u±
0 ∈ L∞(R), the turning rates are locally

Lipschitz continuous as functions of the signals y±, and the kernels K j ∈ L1(R),

j = a, r, al, then we can prove that there exists a unique mild solution u± ∈
L∞ (R × [0,∞) ). A sketch of the proof is presented in Appendix 2. Note that if
the initial data u±

0 (x) is periodic, then the solution u± is periodic (see also the proofs
in [21,25]). Therefore, this theorem is valid on a bounded domain with periodic boun-
dary conditions.

3 Spatially homogeneous steady states and linear analysis

It has been previously shown [13] that system (1) with kernels defined by (4) exhibits at
least four types of spatial patterns: stationary pulses, traveling trains, traveling pulses,
and semi-zigzag pulses. To understand the origin of these patterns, we will first study
the behavior of small perturbations of the spatially homogeneous steady states, that
is, the states that have both right-moving and left-moving individuals evenly spread
over the domain. The growth of these perturbations gives us the first conditions on
the parameters that determine when these steady states become linearly unstable and
form spatial and spatiotemporal patterns (i.e., spatially heterogeneous solutions).

Note that a similar analysis of the number and stability of the steady state solutions
of system (1) has been carried out in [14]. In the following, we will briefly summarize
these results since they are particularly important for the weakly nonlinear analysis
shown in Sect. 4.

As mentioned in Introduction, the turning function we use is described by (5).
Moreover, we assume that system (1)–(4) is defined on a bounded domain [0, L]
with wrap-around boundary conditions for the nonlocal interaction terms (see [14] for
further discussion). This leads to a discrete set of unstable modes that will give rise
to spatial and spatiotemporal patterns. Let us define the total population density to be
A = 1

L

∫ L
0 (u+ + u−)(x, t)dx . The spatially homogeneous steady states of (1) are the

solutions (u+, u−) = (u∗, A − u∗) of the steady-state equation

0 = H(u∗; qal , λ, A) := −u∗ (
λ1 + λ20.5 + λ20.5 tanh(Aqal − 2u∗qal − y0)

)

+(A−u∗)
(
λ1+λ20.5 + λ20.5 tanh(−Aqal+2u∗qal−y0)

)
.

(6)
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Fig. 1 Bifurcation diagrams for the steady-state equation. a Zero alignment (qal = 0); the only steady
state is u∗

3 = A/2. b Nonzero alignment (qal �= 0); (u∗
3, u∗

3) = (A/2, A/2) is always a steady state; at
the critical value qal = Q∗, four new steady states appear through a saddle-node bifurcation. These states
can be any of the following pairs: (u∗

1, u∗
5), (u∗

5, u∗
1), (u∗

2, u∗
4), (u∗

4, u∗
2). At a second critical value of the

alignment parameter, qal = Q∗∗, two of these spatially homogeneous steady states (u∗
2 and u∗

4) disappear
through a subcritical pitchfork bifurcation. c A particular case of b, obtained for a different parameter
space. In all three cases, the solid lines denote the stable solution, while the dashed lines denote the unstable
solution (with respect to spatial perturbations). Shown here is the stability of the steady states to small
spatial perturbations when: a qal = 0, qr = 2.2, λ1 = 0.2, λ2 = 0.9, γ = 0.1, A = 2; here qa is the
bifurcation parameter; at qa = q0

a there is a real bifurcation; b qa = qr = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7,
γ = 0.1, A = 2; (u∗

3, u∗
3) undergoes a real bifurcation at qal = q0

al , while (u∗
1, u∗

5) undergoes an imaginary

bifurcation at qal = q1
al ; c qa = qr = 0, λ1 = 2.0, λ2 = 9.0; at qal = q0

al there is an imaginary
bifurcation

Note that (6) is similar to the one obtained in [14], where the attractive and repulsive
interactions were described by odd kernels. The reason for this is that the interactions
are defined in terms of the total density u = u+ + u− [see (3)], and therefore, (6)
depends only on the alignment coefficient qal , and not on qa and qr .

When attraction and repulsion are the only possible social interactions (i.e., qal = 0),
the only spatially homogeneous steady state is (u+, u−) = (A/2, A/2) (Fig. 1a).
However, when alignment plays a role in the social interactions (i.e., qal �= 0), (6)
can have one, three, or five solutions, as shown in Fig. 1b and c. We will denote these
five solutions by u∗

i , i = 1 . . . 5. Therefore, the spatially homogeneous steady states
generically denoted by (u∗, u∗∗) = (u∗, A − u∗) can be any of the following pairs:
(u∗

1, u∗
5), (u∗

5, u∗
1), (u∗

2, u∗
4), (u∗

4, u∗
2), or (u∗

3, u∗
3) = (A/2, A/2).

The stability of these solutions depends on the parameter space. To investigate this
stability, we consider small perturbations caused by spatially nonhomogeneous terms:
u+(x, t) = u∗ + u p(x, t) and u−(x, t) = u∗∗ + um(x, t). Let u p,m(x, t) ∝ eσ t+ikx ,
with the wave number k and the growth rate σ . Note that the wrap-around boundary
conditions require that the wave number k attains only discrete values kn = 2nπ/L ,
n ∈ N. Because of the conservation of the total density, k0 = 0 is not an allowable
wave number and hence, n ∈ N+. If we substitute the expressions for u±(x, t) into
system (1), we obtain the dispersion relation

σ 2 + σC(k) + D(k) = 0, (7)
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44 R. Eftimie et al.

where

C(k) = L1 + L2 − M5qal(K̂ +
al (k) + K̂ −

al (k)),

D(k) = γ 2k2 + γ ik
(

L2 − L1 + M5qal(K̂ −
al (k) − K̂ +

al (k))
)

−2M5γ ik
(

qr (K̂ +
r − K̂ −

r ) − qa(K̂ +
a − K̂ −

a )
)

,

L1 = λ1 + λ20.5 + λ20.5 tanh(M1 − y0),

L2 = λ1 + λ20.5 + λ20.5 tanh(−M1 − y0), (8)

P1 = λ20.5(1 + tanh2(M1 − y0)),

P2 = λ20.5(1 + tanh2(−M1 − y0)),

M1 = qal(u
∗∗ − u∗),

M5 = P1u∗ + P2u∗∗.

Here, K̂ j , j ∈ {a, r, al}, are the Fourier transforms of the interaction kernels (4):

K̂ ±
j (k) =

∞∫

−∞
K j (s)e

±iks j ds = exp(±is j k − k2m2
j/2). (9)

Note that these integrals are defined on the entire real line, whereas (3) are defined on
[0,∞). Since the constants m j , j = r, al, a were chosen such that the support of more
than 98% of the mass of the kernels is inside the interval [0,∞), we can approximate
the integrals defined on [0,∞) by integrals on (−∞,∞) (see also [14]).

Equations (7)–(8) say that the steady state (u+, u−) = (u∗, u∗∗) is unstable, that
is �(σ (k)) > 0, when C(k) < 0 or D(k) < 0. The first term, C(k), is negative when
λ2 is large. Similar to the case discussed in [14], the term D(k) is negative when (a)

λ2 is large, or when (b) attraction is larger than repulsion : qa

(
K̂ +

a (k) − K̂ −
a (k)

)
>

qr

(
K̂ +

r (k) − K̂ −
r (k)

)
. When λ2 is large, the unstable modes are those with large k.

When attraction is larger than repulsion, the modes with small k are unstable. We will
come back to this result in Sect. 4, when we will investigate the contribution of the
nonlinear terms to the final pattern.

Figure 1 shows three types of bifurcation diagrams obtained for system (1). Since
these bifurcations are the starting point for the weakly nonlinear analysis discussed in
Sect. 4, we will discuss them in detail. In Fig. 1a, there is a critical value of attraction
qa = q0

a such that the steady state u∗
3 is stable for qa < q0

a , and unstable otherwise. In
Fig. 1b and c, the bifurcation parameter is qal . Figure 1b shows that, in some parameter
space, there exists a critical value q0

al < Q∗ such that for qal < q0
al , the solution u∗

3
is stable, while for qal > q0

al it is unstable. The relative position of the bifurcation
point depends on the parameter space. Such an example is shown in Fig. 1c where
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the bifurcation point at which u∗
3 changes stability coincides with Q∗∗. Actually, for

qal > Q∗∗, u∗
3 is always unstable, independent of the parameter space. Also, there

exists a critical value of alignment q0
al such that the steady states u∗

1 and u∗
5 are unstable

for qal < q0
al and stable otherwise, as seen in Fig. 1c. In Fig. 1b, this critical value of

alignment is denoted q1
al . The other two steady states, u∗

2 and u∗
4, are always unstable.

Moreover, numerical simulations suggest that the solutions perturbed from u∗
2 and u∗

4
go to the same attractor as the solutions perturbed from the other three steady states
(u∗

1, u∗
3, and u∗

5). For this reason, we will ignore u∗
2 and u∗

4 for the rest of the paper.
It should be noted that, when u∗ �= u∗∗, equation (7) is complex. However, for

u∗ = u∗∗, it is real. This has implications on the type of the eigenvalues of system (1).
For the first case, all eigenvalues are complex. For the second case, the eigenvalues
can be real or complex, depending on the values of the parameters.

The spatially homogeneous solutions that become unstable when �(σ (k)) > 0 are
eventually bounded by nonlinear terms. In the following section, we will take into
consideration these nonlinear terms and use them to derive amplitude equations that
govern the behavior of the solutions for large time.

4 Nonlinear analysis

The previous linear stability analysis is only valid for small time and infinitesimal
perturbations. For large time, the nonlinear terms dominate the growth of the unstable
modes. To study the influence of these nonlinear terms on the final heterogeneous pat-
tern, we will employ the classical method of weakly nonlinear analysis (see [28,43]).
The method uses separate time scales to study how the amplitude of the heterogeneous
solution varies with time. More precisely, there is a fast time scale and a slow time
scale. The fast time scale is represented by the initial time region (t) where the solution
starts to develop. This is the time scale where the linear stability analysis is valid. The
slow time scale is represented by a second time region (T = ε2t) where the effects
of the nonlinear terms become important. Here, the amplitude of these heterogeneous
patterns varies slowly. The two time variables t and T are considered to be independent
as ε approaches zero.

In this section, we study the patterns that bifurcate from the spatially homogeneous
steady state (u∗, u∗∗). Figure 2 shows two patterns that emerge through a real bifurca-
tion [cases (a) and (b)], and two patterns that emerge through an imaginary bifurcation
[cases (c) and (d)]. Figure 2a describes a single stationary pulse obtained for large
attractive interactions (qa). Figure 2b describes multiple stationary pulses which are
obtained for large turning rates (λ2). Figure 2c describes a traveling train formed of
one peak, obtained for large attraction. Figure 2d describes a traveling train formed
of 17 peaks, and obtained for large turning rates. We should note here that we define
a traveling train to be a pattern that doubles the number of its peaks as we double the
domain size. A traveling pulse, on the other hand, has the same number of peaks as we
double the domain size. By this definition, the pattern shown in Fig. 2c is a traveling
train, since doubling the domain size leads to the formation of two moving groups. It
has been observed numerically [13] that the hyperbolic system (1) exhibits two more
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Fig. 2 Patterns exhibited by system (1). Shown is the total density u(x, t) = u+(x, t) + u−(x, t).
a Stationary pulses; qa = 0.93, qr = 2.2, qal = 0, λ1 = 0.2, λ2 = 0.9, γ = 0.1. b Stationary pulses;
qr = qa = 0, qal = 0.85, λ1 = 2.0, λ2 = 9.0, γ = 0.1. c Traveling train; qa = 1.0, qr = 0.1, qal = 2.45,
λ1 = 0.2, λ2 = 0.9. d Traveling trains; qa = qr = 0, qal = 2.08, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1

patterns, namely traveling pulses and semi-zigzag pulses. Since both patterns occur
far from the bifurcation point, we will not discuss them in this paper.

In Sects. 4.1 and 4.2, we focus on the situation when the bifurcation occurs at a
real eigenvalue. As previously mentioned, the spatially homogeneous steady state is
(u∗, u∗∗) = (u∗

3, u∗
3). We first analyze system (1) when only attractive and repulsive

interactions are present (that is, qr , qa �= 0, qal = 0). In this case, previous results
[14] have shown that it is possible to obtain stationary heterogeneous patterns, such
as the single stationary pulse shown in Fig. 2a. At the end of Sect. 4.2, we will briefly
discuss the case when qa = qr = 0 and qal �= 0. In this case it is possible to obtain
multiple stationary pulses, such as those shown in Fig. 2b. In Sects. 4.3 and 4.4, we
will study a bifurcation that occurs at a purely imaginary eigenvalue. The focus will
be on the steady state (u∗, u∗∗) = (u∗

1, u∗
5). To keep the results tractable, we will

consider the situation when alignment is the only social interaction (that is, qal �= 0,
qa = qr = 0). In this case, we obtain spatiotemporal patterns described by traveling
trains, as shown in Fig. 2d. At the end of Sect. 4.4, we will briefly discuss the situation
when we include repulsive and attractive interactions. The traveling train pattern that
results in this case is shown in Fig. 2c.
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4.1 Weakly nonlinear analysis in the neighborhood of a real bifurcation

In this section, we will consider only attractive and repulsive social interactions (that
is, qal = 0). As mentioned, the only spatially homogeneous steady state is (u∗, u∗∗) =
(A/2, A/2). We are interested in the stability of this steady state as we increase the
magnitude of attraction (qa). Let us denote by q0

a the critical value of qa for which the
dispersion relation satisfies σ(q0

a , kc) = 0 (the case is depicted in Fig. 1a). Let k = kc

be the critical wave number. A solution of (1) near the bifurcation point is given by

u±(x, t) ∝ eσ t+ikc x + c.c., (10)

where “c.c.” stands for “complex conjugate”. We perform a perturbation analysis in a
neighborhood of the critical value (q0

a ):

qa = q0
a + νε2, 0 < ε � 1, ν = ±1. (11)

Writing the dispersion relation in a power series about q0
a , namely

σ(qa, kc) = σ(q0
a , kc) + ∂σ(q0

a , kc)

∂qa
ε2ν + O(ε4), (12)

and substituting it into (10) gives us

eσ(qa ,kc)t+ikcx = eikcx+ dσ(q0
a ,kc)

dqa
νε2t ≈ eikcxα(ε2t). (13)

The amplitude α depends on the slow time ε2t . This suggests we introduce a new time
variable T = ε2t and consider fast and slow time scales, t∗ and T , respectively:

t → t∗ + T . (14)

In the limit ε → 0 we treat these two time scales as being independent [32]. We
denote ũ±(x, t∗, ε, T ) = u±(x, t). For notational simplicity, we drop the asterisk and
the tilde, and assume the following formal expansion

u+(x, t, ε, T ) = u∗ + εu+
1 + ε2u+

2 + ε3u+
3 + O(ε4),

(15)
u−(x, t, ε, T ) = u∗∗ + εu−

1 + ε2u−
2 + ε3u−

3 + O(ε4).

We then expand the nonlinear function tanh(y±[u+, u−]− y0) = tanh(y±[u∗, u∗∗]+∑
j ε j y±[u+

j , u−
j ] − y0) in a Taylor series about y±[u∗, u∗∗]. The turning functions
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(2) and (5) can therefore be written as

λ± = L1,2 + P1,2

∑
j

ε j y±[u+
j , u−

j ] + S1,2

⎛
⎝∑

j

ε j y±[u+
j , u−

j ]
⎞
⎠

2

+T1,2

⎛
⎝ε j

∑
j

y±[u+
j , u−

j ]
⎞
⎠

3

+ O(ε4), j = 1, 2, 3 . . . , (16)

with L1,2 and P1,2 defined by (8), and

S1 = λ2

2
tanh(M1 − y0)

(
1 − tanh2(M1 − y0)

)
,

S2 = λ2

2
tanh(−M1 − y0)

(
1 − tanh2(−M1 − y0)

)
,

T1 = λ2

12

(
−(1 − tanh(M1 − y0)

2)2 + 4 tanh(M1 − y0)
2(1 − tanh(M1 − y0)

2)
)

,

T2 = λ2

12

(
−(1 − tanh(−M1 − y0)

2)2+4 tanh(−M1−y0)
2(1 − tanh(−M1−y0)

2)
)

.

Since we consider qal = 0, this implies that M1 = 0, L1 = L2, P1 = P2, S1 = S2,
and T1 = T2.

The nonlinear system (1) can be written as

N(u) = 0, (17)

with u = (u+, u−)T . Substituting expressions (15) and (16) into this equation leads
to N(

∑
j=1 ε j u j ) = ∑

j N j (u j )ε
j . At each O(ε j ), we can write N j (u j ) = L(u j ) −

N j − E j . Here L(u j ) represents the linear part of the system (1), N j contains the
nonlinear terms formed of u±

j−1, u±
j−2, etc., and E j contains the slow time derivatives

∂T u±
j−2, ( j ≥ 3) and the terms multiplied by ν. The linear operator L is the same

at each O(ε j ) step, whereas N j and E j have to be calculated every time. Therefore,
N j (u j ) = 0 reduces to

L(u j ) = N j + E j , j = 1, 2, 3, . . . . (18)

Since the eigenvalues are real, the spatially homogeneous steady state becomes linearly
unstable to spatial patterns, and therefore, the linear operator L is defined as

L(u) =
(

γ ∂x + L1 + M5 K ∗ · −L1 + M5 K ∗ ·
−L1 − M5 K ∗ · −γ ∂x + L1 − M5 K ∗ ·

) (
u+
u−

)
, (19)

where the convolution K ∗ · is defined by

K ∗ u± = qr

(
K̃r ∗ u± − Kr ∗ u±)

− q0
a

(
K̃a ∗ u± − Ka ∗ u±)

, (20)
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with K̃r,a(s) = Kr,a(−s), and (Kr,a∗u±)(x) = ∫ ∞
−∞ Kr,a(s)u±(x−s)ds. Throughout

the analysis, we will use the operator Lkc , which is obtained by applying L to solutions
of the form eikcx :

Lkc =
(

γ ikc + L1 + M5 K̂ +(kc) −L1 + M5 K̂ +(kc)

−L1 − M5 K̂ +(kc) −γ ikc + L1 − M5 K̂ +(kc)

)
. (21)

Here we define K̂ +(kc) = qr

( ˆ̃K +
r (kc) − K̂ −

r (kc)
)
−q0

a

( ˆ̃K +
a (kc) − K̂ −

a (kc)
)

, where

K̂ ±
j , j = r, a are the Fourier transforms (9). Later, we will also use K̂ −(kc) =

−K̂ +(kc), K̂ +(2kc), and K̂ −(2kc) = −K̂ +(2kc). At O(ε1), the nonlinear terms are
N1 = E1 = 0, and therefore (17) reduces to solving

L(u) = 0. (22)

This linear equation has a nontrivial solution. Therefore, for O(ε j ), j ≥ 2, the
nonlinear equation (18) has a solution if and only if N j + E j satisfies the Fredholm
alternative [24]. However, to be able to apply the Fredholm alternative, one has to
investigate whether the linear operator L is compact.

Throughout this section, we consider the Hilbert space

Y =
⎧⎨
⎩v(x, τ )|(x, τ ) ∈ [0, L] × [0,∞), s.t. lim

T →∞
1

T

T∫

0

L∫

0

|v|2dxdτ < ∞
⎫⎬
⎭ , (23)

with the inner product

〈v, w〉 = lim
T →∞

1

T

T∫

0

L= 2π
kc∫

0

(v1w̄1 + v2w̄2)dxdτ, (24)

where v = (v1, v2)T , w = (w1, w2)T . Moreover, we will assume that u± satisfy
periodic boundary conditions.
Note that since u± are bounded on L∞([0, L] × [0, T ]) (see Appendix 2), they
are also bounded on L2([0, L] × [0, T ]) [41]. Therefore, the limit limT →∞
1
T ‖ v ‖2

L2([0,L]×[0,T ]) is finite.
Let us now rewrite the linear operator L = γ Ld + L0, where Ld is the differential

operator

Ld(u) =
(

∂x 0
0 −∂x

)(
u+
u−

)
, (25)
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and L0 is described by

L0(u) =
(

L1 + M5 K ∗ · −L1 + M5 K ∗ ·
−L1 − M5 K ∗ · L1 − M5 K ∗ ·

)(
u+

u−

)
. (26)

Note that the operator L0 is compact (since the integral operator K is compact (see,
e.g., [41], Section 3.4)). The problem is caused by the differential operator Ld which is
not bounded [41]. This issue can be addressed following the approach shown in [27],
where the differential operator is interpreted as a distribution in a Sobolev subspace
of Y , which requires the derivatives to be also in Y . This way, the distributional
interpretation defines the operator on a closed domain in Y . In a similar manner, we
can restrict the definition of the linear operator L to act on the Sobolev subspace. The
adjoint of this linear operator, L∗, acts on elements of Y in the following manner:

L∗(u) =
(−γ ∂x + L1 + M5 K̂ ∗ ∗ · −L1 − M5 K̂ ∗ ∗ ·

−L1 + M5 K̂ ∗ ∗ · γ ∂x + L1 − M5 K̂ ∗ ∗ ·

)(
u+

u−

)
, (27)

where K ∗ describes the adjoint integral operator.
Following similar steps as in [27], it can be shown that the kernel of the above res-

tricted operator is finite-dimensional, and its range is closed. Therefore, the Fredholm
alternative can be applied, which means that N j + E j has to be orthogonal to the
bounded solution of the adjoint homogeneous problem

L∗(û) = 0. (28)

Let us consider this solution û = (û+, û−)T to be defined by

û = β1(T )Weikcx + β2(T )W̄e−ikcx . (29)

Then (28) results in

L̄T
kc

(û) = 0, (30)

with the adjoint operator defined as

L̄T
kc

=
(−γ ikc + L1 + M5 K̂ −(kc) −L1 − M5 K̂ −(kc)

−L1 + M5 K̂ −(kc) γ ikc + L1 − M5 K̂ −(kc)

)
. (31)

The orthogonality condition reads

〈û, (N j + E j )〉 = 0. (32)

We are interested only in those terms of Ni + Ei that contain e±ikcx since these terms
give rise to secular solutions. For the particular case we study here, the secular terms
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appear at O(ε3). The nonlinear interactions N3 + E3 are described by

N3 + E3 = ∂α

∂T
eikcx R(3) + ∂ᾱ

∂T
e−ikcx R̄(3) + αeikc xνR(2) + ᾱe−ikcxνR̄(2)

+α|α|2eikcx R(1) + ᾱ|α|2e−ikc x R̄(1) + other terms, (33)

where “other terms” describe those terms of the form e±2ikcx , e±3ikcx , etc. The coef-
ficients R(1), R(2), and R(3) are given in Appendix 3. Substituting this expression into
the orthogonality condition leads to the following amplitude equation:

dα

dT
= −ναY − α|α|2 X, (34)

where

Y = W̄ · R(2)

W̄ · R(3)
, X = W̄ · R(1)

W̄ · R(3)
. (35)

We can verify that

Y = dσ

dqa
= γ ik M5(K̂ +

a − K̂ −
a )

L1
. (36)

Therefore the linear approximation of this amplitude equation agrees with the linear
prediction given by the dispersion relation (12).

The amplitude equation (34) is complex. To obtain a real equation, let us define
α(T ) = R(T )eiθ(T ), with real terms R(T ) = |α| and θ(T ). Thus, equation (34) can
be rewritten as

d R

dT
= −νR�(Y ) − R3�(X), (37)

dθ

dT
= −ν�(Y ) − R2�(X), (38)

with � and � denoting the real and imaginary parts of the two coefficients X and Y .
The two steady-state solutions of (37) are R = 0 and R = √−ν�(Y )/�(X). To study
the stability of these solutions, we write R = R0 + Rδ , where R0 is the steady state
and Rδ is a small perturbation. Equation (37) then becomes

d Rδ

dT
= Rδ

(
−ν�(Y ) − 2R2

0�(X)
)

. (39)

We can observe that the trivial state R0 = 0 is stable if ν�(Y ) > 0, and unstable
otherwise. The nontrivial state R0 = √−ν�(Y )/�(X) is unstable if ν�(Y ) > 0, and
stable otherwise.

Figure 3 shows the variation of the amplitude for the stationary pulses described
in Fig. 2a. For u∗

3 = A/2 = 1, qr = 2.2, qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9,
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Fig. 3 The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t) + u−(x, t) as we perturb
the magnitude of attraction qa . The dashed curves represent the unstable branch obtained using the weakly
nonlinear analysis. The solid circles represent the stable branch obtained numerically, whereas the open
circles represent the unstable branch obtained numerically. The critical value of qa is q0

a = 1.008. The
other parameters are: λ1 = 0.2, λ2 = 0.9, γ = 0.1, qr = 2.2, qal = 0, y0 = 2. For qa < q0

a , the zero
amplitude branch (corresponding to |α2| = 0) is stable (continuous line). For qa > q0

a it becomes unstable
(dashed line). When qa < q0

a , the curve formed by the open circles marks the boundary of the stability
region, as determined numerically. Perturbations with amplitude on or above this curve grow to the upper
branch (solid circles), while perturbations with amplitude below this curve decay to zero

the bifurcation to spatial patterns occurs at q0
a = 1.008. The coefficients that appear

in the amplitude equation (34) are both negative: �(X) < 0, �(Y ) < 0. Therefore,
when ν = −1, the curve |α|2 = −ν�(Y )/�(X) > 0 is unstable, while |α| = 0 is
stable. Hence, the nonzero amplitude (the dashed line) bifurcates subcritically to the
left. The analytical formula for amplitude [max(u)–min(u)] is given in Appendix 3. In
the next section, we perform numerical simulations to verify these analytical results.

Note that in this section, we have chosen the parameters to have different order of
magnitudes (see, e.g., qa and qr ). It is in this parameter regime that solutions become
unstable, as predicted by the linear stability analysis.

4.2 Numerical results for a real bifurcation

To verify the results of this weakly nonlinear analysis, we perform numerical simu-
lations. The numerical scheme we use is a second-order McCormack scheme [20].
The initial conditions are perturbations of the spatially homogeneous steady states
(u∗, u∗∗). The amplitude of these perturbations is given by 0.02 cos(kcπx), x ∈ [0, L].
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Note that similar results can be obtained if we use random perturbations. For the
parameter values specified in the previous section, the final heterogeneous pattern is
similar to the one described in Fig. 2a. Figure 3 shows the amplitude of the total den-
sity, as determined by max(u+ + u−) − min(u+ + u−). The solid circles represent
the stable numerical solution, while the open circles represent the unstable numerical
solution. For qa > q0

a , the spatially homogeneous steady state (|α| = 0) bifurcates
numerically to a large amplitude solution (solid circles). However, as we decrease qa ,
we observe hysteresis behavior: the solution does not return to the spatially homo-
geneous steady state when qa = q0

a . It will eventually return to this steady state for
some qa < q0

a . This is consistent with the previous analytical results regarding the
existence of an unstable amplitude that bifurcates subcritically. We checked numeri-
cally the existence of this branch by choosing the initial conditions to be perturba-
tions of the spatially homogeneous steady states with terms of the form Â cos(kcπx),
where Â is the variable amplitude. For qa < q0

a , the curve formed of open circles
represents the unstable branch. This curve represents a threshold: perturbations with
amplitude Â on or above this curve grow until the solution reaches the upper stable
branch, whereas perturbations with amplitude below this curve decay to zero. Since
the spatially homogeneous steady state is (u∗

3, u∗
3) = (1, 1), imposing the condi-

tion that the initial solution is positive, forces us to use Â ≤ 2. This happens for
qa ∈ [0.915, 1.008].

There are two remarks regarding Fig. 3. First, it is known that for subcritical bifur-
cations, the cubic amplitude equation (34) can give only a qualitative description of
the behavior of the solutions [10]. However, this qualitative behavior is enough for the
biological questions we want to address in this paper. We note here that for qa < q0

a ,
the two unstable curves (the analytical and the numerical one) agree acceptably well,
especially near the bifurcation point. Second, the high-amplitude solution drops to
zero far from the bifurcation point (i.e., at qa = 0.83). However, the weakly nonlinear
analysis does not hold near the point where the solution drops to zero. Therefore, we
do not expect here the stable high-amplitude curve and the unstable analytical curve
to match. To study the behavior of the solution far from the bifurcation point, one can
derive “phase equations” [33].

Figure 3 can be used to investigate the effect of attraction on the structure of sta-
tionary groups. Since the bifurcation is subcritical, the stable high-amplitude solution
gives us the effect of the attractive interactions. More precisely, we notice that increa-
sing the strength of the attraction (qa) leads to larger amplitudes for the total density
u. This means more compact groups. Moreover, for attraction less than q0

a , solutions
with amplitude less than

√−ν�(Y )/�(X) will decay. This suggests that groups that
have a density less than a certain threshold will eventually disperse. Of course, this
threshold depends not only on qa , but also on all other parameters.

Note that the linear analysis predicted that the spatially homogeneous solution
(i.e., the solution with zero amplitude) is stable for all qa < q0

a . The weakly nonlinear
analysis, on the other hand, shows that it is only locally stable. The solution can be
destabilized by perturbations with amplitudes larger than a certain threshold.

If we now consider qr = qa = 0 and large turning rates (λ1, λ2), we obtain
similar results. However, in this case, the bifurcation parameter is the magnitude
of alignment qal . The final heterogeneous pattern is described in Fig. 2b. Figure 4
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Fig. 4 The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t) + u−(x, t) as we perturb
the magnitude of alignment qal . The solid circles represent the stable branch obtained numerically, while the
open circles represent the unstable branch obtained numerically. The dashed curve represents the unstable
branch obtained using weakly nonlinear analysis. For qal < q0

al , the zero amplitude branch (corresponding

to |α2| = 0) is stable (the continuous curve). For qa > q0
a it becomes unstable (the dashed curve). The

parameters are: q0
al = 0.845, kc = k14 = 8.867, λ1 = 2.0, λ2 = 9.0, γ = 0.1, qr = 0, qa = 0, y0 = 2

shows the amplitude of the stationary pattern that bifurcates subcritically to the left
at q0

al = 0.845. Therefore, when the individual turning rates are very large, but at the
same time organisms align with their neighbors, increasing the strength of alignment
leads to higher amplitude solutions. Again, this means that the groups become more
compact. Moreover, there is a similar threshold for the total density below which the
groups will disperse. The existence of this threshold suggests that when individuals
turn very frequently (i.e., λ1,2 are large), the amplitude of the perturbations required
to destabilize the spatially homogeneous solution decreases as alignment increases.
Therefore, it seems that in this case, alignment is enough to cause aggregative behavior.

4.3 Weakly nonlinear analysis in the neighborhood of an imaginary bifurcation

In the following, we consider the case when the bifurcation to spatial heterogeneous
patterns occurs at an imaginary eigenvalue. To keep the results tractable, we will
assume that alignment is the only social interaction (that is, qa = qr = 0). This
corresponds to the pattern shown in Fig. 3d. Consequently, we will fix all other
parameters and assume that the bifurcation to spatially nonhomogeneous patterns
occurs as qal passes through a critical value q0

al . At the critical point (q0
al , kc), the two
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eigenvalues of the dispersion relation (7) are σ1(q0
al , kc) = iω, and σ2(q0

al , kc) =
ω0 + iω, with ω0 < 0. As mentioned before, this happens when the spatially homoge-
neous steady state is any of the pairs (u∗

1, u∗
5), or (u∗

5, u∗
1). Throughout this subsection,

we will assume that (u∗, u∗∗) = (u∗
1, u∗

5) and study what happens in this case. Since
the second eigenvalue has always a negative real part, we ignore it and focus only
on the first eigenvalue. A solution of system (1) near the bifurcation point (q0

al , kc) has
the form

u±(x, t) ∝ eiωt+ikcx + c.c. (40)

As before, we perturb qal away from the critical value q0
al ,

qal = q0
al + ε2ν, 0 < ε � 1, ν = ±1. (41)

Note that the spatially homogeneous steady state (u∗
3, u∗

3), which we discussed in the
previous section, does not depend on the bifurcation parameter. However, as shown
in Fig. 1b and c, the spatially homogeneous steady state (u∗

1, u∗
5) does depend on the

magnitude of alignment (qal ): as we increase qal , u∗ increases while u∗∗ decreases.
Therefore, in this case, a perturbation of qal will induce a perturbation of these steady
states:

u∗ = u∗
0 − ε2ν

∣∣∣∣∣
du∗(q0

al)

dqal

∣∣∣∣∣ , u∗∗ = u∗∗
0 + ε2ν

∣∣∣∣∣
du∗(q0

al)

dqal

∣∣∣∣∣ , (42)

where

∂u∗(q0
al)

∂qal
= − M5(u∗∗ − u∗)

L1 + L2 − 2q0
al M5

, (43)

and the constants L1, L2 and M5 are given by (8). For notational simplicity, we will
drop the index “0” from the spatially homogeneous steady states u∗

0 and u∗∗
0 . Therefore,

the left- and right-moving densities can be written as

u+(x, t, ε, T ) = u∗ − ε2ν

∣∣∣∣∣
du∗(q0

al)

dqal

∣∣∣∣∣ + εu+
1 + ε2u+

2 + ε3u+
3 + O(ε4),

(44)

u−(x, t, ε, T ) = u∗∗ + ε2ν

∣∣∣∣∣
du∗(q0

al)

dqal

∣∣∣∣∣ + εu−
1 + ε2u−

2 + ε3u−
3 + O(ε4).

Expanding the dispersion relation in power series leads to

σ(qal , kc) = σ(q0
al , kc) + ∂σ(q0

al , kc)

∂qal
ε2ν + O(ε4). (45)
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To calculate the O(ε2) term that appears in (45), we use (7):

∂σ(q0
al , kc)

∂qal
= −iω

∂C(q0
al ,kc,u∗)
∂qal

− ∂ D(q0
al ,kc,u∗)
∂qal

2iω + C(q0
al , kc, u∗)

. (46)

Because u∗ and u∗∗ = A − u∗ depend on qal , the terms ∂C
∂qal

and ∂ D
∂qal

are given in

terms of the derivative of u∗ with respect to qal . Hence, when σ(q0
al , kc) = iω, we

obtain

∂σ

∂qal
=

−(u∗∗−u∗)P−M7�− 2q0
al (u

∗∗−u∗)M5

L1+L2−2q0
al M5

(
P+�(P1−P2−4q0

al (u
∗S1−u∗∗S2))

)

2iω+L1 + L2−M5q0
al

(
K̂ +

al+K̂ −
al

) ,

(47)

where

P = P1(iω − γ ikc) − P2(iω + γ ikc),

� = K̂ +
al (iω + γ ikc) + K̂ −

al (iω − γ ikc), (48)

M7 = M5 + 2q0
al(u

∗∗ − u∗)(u∗S1 − u∗∗S2),

while the rest of the constants are given by (8).
Since the eigenvalues are imaginary, the spatially homogeneous steady states

become unstable to spatiotemporal patterns, and therefore, the linear operator asso-
ciated to system (1) is given by

L(u)=
⎛
⎝ ∂t+γ ∂x+L1+M5q0

al Kal ∗ · −L2+M5q0
al Kal ∗ ·

−L1−M5q0
al Kal ∗ · ∂t−γ ∂x+L2−M5q0

al Kal ∗ ·

⎞
⎠

(
u+
u−

)
. (49)

However, throughout the analysis, we will use Lω,kc which is obtained by applying
the operator L to solutions of the form eiωt+ikcx :

Lω,kc =
⎛
⎝ iω + γ ikc + L1 − M5q0

al K̂ −
al −L2 + M5q0

al K̂ +
al

−L1 + M5q0
al K̂ −

al iω − γ ikc + L2 − M5q0
al K̂ +

al

⎞
⎠ . (50)

The corresponding adjoint operator L̄T
ω,kc

is given in Appendix 4. Following the same

steps as before, at O(ε3) we have to impose the condition that the solution verifies the
Fredholm Alternative. This leads to a similar amplitude equation,

dα

dT
= −ναY − α|α|2 X, (51)
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where

Y = V̄ · R(2)

V̄ · R(3)
, X = V̄ · R(1)

V̄ · R(3)
. (52)

After some lengthy computations, we can verify that

Y = dσ(q0
al)

dqal
, (53)

with dσ
dqal

given by (47). Therefore the linear approximation of this amplitude equation
agrees with the linear prediction given by the dispersion relation (45).

Similar to the results in Sect. 4.2, the steady-state solutions for the magnitude of
the amplitude equation are given by

|α| = 0, |α| = √−ν�(Y )/�(X). (54)

The zero state |α| = 0 is stable if ν�(Y ) > 0, and unstable otherwise. The state
|α| = √−ν�(Y )/�(X) is unstable if ν�(Y ) > 0, and stable otherwise.

For qr = qa = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, and kc = k17 = 10.55,
the two coefficients that appear in (54) are �(Y ) > 0 and �(X) < 0. Hence
|α|2 = −ν

�(Y )
�(X)

> 0 if ν > 0, which means that solution bifurcates to the right.
Moreover, since ν�(Y ) > 0, the zero-amplitude steady state is stable, whereas the
nonzero-amplitude solution is unstable. Figure 5 shows this bifurcation. The conti-
nuous curve represents the stable solution, whereas the dashed curve represents the
unstable solution obtained using weakly nonlinear analysis.

4.4 Numerical results for the imaginary bifurcation

To confirm the validity of these results, we perform numerical simulations. Again, the
initial conditions are perturbations of the spatially homogeneous steady states with
terms of the form Â cos(kcπx). Figure 5 shows the amplitude of the spatiotemporal
solutions as we perturb the magnitude of alignment qal . As before, the spatial homoge-
neous solution bifurcates subcritically to spatial heterogeneous solutions represented
by the traveling trains (seen in Fig. 3d). The solid circles represent the stable nume-
rical solution, while the open circles represent the unstable numerical solution. For
qal ≥ q0

al , the branch described by the open circles represents a threshold: perturbations
with amplitude below this curve decay to zero, while perturbations with amplitude on
or above this curve grow to the upper branch. Therefore, the numerical results are
consistent with the analytical results.

We notice that increasing the magnitude of alignment leads to a slight decrease in
the amplitude of the solutions. This suggests that moving groups become more elon-
gated, as alignment is increased. This is opposite to the effect observed in the case of
stationary groups. There, the alignment makes the group more compact. As before,
there is a certain threshold for the total density, corresponding to |α|2=−ν

�(Y )
�(X)

. Groups
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Fig. 5 Amplitude of the spatially heterogeneous solution as we perturb the magnitude of alignment qal .
The solid circles represent the stable numerical solution, while the open circles represent the unstable
numerical solution. The continuous curve represents the stable analytical solution, while the dashed curve
represents the unstable analytical solution. The critical value of qal is q0

al = 2.088. The other parameters
are: λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, qr = qa = 0, L = 10.12, kc = 10.55, y0 = 2

with total density greater than this threshold will become more dense and persist for
a long time, while groups with the density below this threshold will disperse. Moreo-
ver, the existence of this threshold suggests that when individuals do not turn very
frequently (i.e., λ1,2 are small), the amplitude of the perturbations required to desta-
bilize the homogeneous solution increases as alignment increases. This is opposite to
the case discussed in Sect. 4.2. Here, alignment is not enough to cause aggregative
behavior. It requires a certain amount of noise (i.e., perturbations), which combined
with alignment, would lead to the formation of groups.

As mentioned in Sect. 3, introducing attractive and repulsive interactions leads to
the emergence of the first wave number, k1, as shown in Fig. 2c. In this case, the
result is a traveling train formed only of one group (see Fig. 2c). Figure 6 shows
the subcritical bifurcation obtained in this case. The stable high-amplitude branch (the
solid circles) corresponds to the solution shown in Fig. 2c. The effect of alignment on
the moving group is similar to the previous case.

5 Discussion

In this article, we have analyzed two spatial and spatiotemporal patterns displayed by a
hyperbolic model used to study animal group formation. The investigated patterns are
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Fig. 6 The amplitude of the spatially heterogeneous solution as we perturb the magnitude of alignment qal ,
while taking into consideration the attractive and repulsive interactions. The solid circles represent the stable
numerical solution, while the open circles represent the unstable numerical solution. The dashed curves
represent the unstable analytical solution. The critical value of qal is q0

al = 2.472. The other parameters
are: λ1 = 0.2, λ2 = 0.9, γ = 0.1, qr = 0.1, qa = 1.0, L = 10, kc = 0.628, y0 = 2

stationary pulses and traveling trains. Using a weakly nonlinear analysis, we show that
the stationary pulses arise through a real bifurcation from the spatially homogeneous
steady state (u∗

3, u∗
3). The traveling trains arise through an imaginary bifurcation from

a different steady state, namely (u∗
1, u∗

5). In both cases, the bifurcations are subcritical.
It should be mentioned that while the steady state (u∗

3, u∗
3) is constant, the steady state

(u∗
1, u∗

5) depends on the bifurcation parameter.
Note that the linear stability analysis predicts that in some parameter spaces, the

spatially homogeneous steady states are stable to infinitesimal disturbances (see, e.g.,
Fig. 4, for qal < q0

al ). However, the weakly nonlinear theory shows that these steady
states can actually become unstable to disturbances whose amplitudes are greater
than a threshold which corresponds to |α|2=−ν

�(Y )
�(X)

. Moreover, the weakly nonlinear
analysis helps us understand some aspects of the complex structure of the attractors of
the system. Figure 5, e.g., shows that for qal ∈ (2.088, 2.15) there is a locally stable
spatially homogeneous steady state (u∗

1, u∗
5), surrounded by an unstable limit cycle.

This unstable limit cycle is then surrounded by another stable limit cycle. It is precisely
this stable limit cycle which attracts the solutions obtained by perturbing the steady
states (u∗

2, u∗
4). Moreover, this limit cycle attracts large amplitude perturbations of the

locally stable spatially homogeneous steady states (u∗
3, u∗

3) (see Fig. 1c).
In Sect. 4, we mentioned that the traveling pulses which can be observed in this

hyperbolic system, occur far from the bifurcation point. They are actually secondary
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bifurcations which arise from traveling trains when alignment (qal) and the
inter-individual attraction (qa) are sufficiently large. The semi-zigzag pulses are a tran-
sient pattern determined by secondary symmetry-breaking bifurcations which cause
the transition from traveling trains to stationary pulses. They occur in a parameter
space far from the bifurcation point, when two adjacent wave numbers interact with
each other. The investigation of these patterns is a subject for further research.

Note that there are other symmetries involved in the emergence of different patterns,
and which correspond to particular parameter subspaces. For example, when qa =
qr = 0, the time-independent solutions (i.e., u±

t = 0) are invariant under the transfor-
mation (u+(x), u−(x)) → (u−(−x), u+(−x)). When qal = 0, the time-independent
solutions are invariant under the transformation (u+(x), u−(x)) → (−u−(−x),

−u+(−x)). Moreover, in different parameter spaces it is possible to have mode interac-
tions (not discussed here): steady-state/Hopf interactions, and Hopf/Hopf interactions.
The complexity of all these symmetries suggests that, even if the weakly nonlinear
results are very useful, we are still far from thoroughly understanding all these patterns.

Before discussing the biological implications of the weakly nonlinear results, we
should stress the fact that the one-dimensional patterns investigated in the previous sec-
tions can approximate the behavior of animal groups that move through a domain which
is much longer than wide. Therefore, the biological insights obtained using weakly
nonlinear analysis are valid only under these assumptions. However, in nature, the
majority of the aggregations are in two and three dimensions. The rigorous analysis of
the social interactions that lead to the formation of these aggregations requires a model
which is two- or three-dimensional. A two-dimensional analogue of system (1) can
be derived using a velocity-jump process (see, e.g., [36,38]). We briefly describe such
a model in Appendix 1. A detailed description and analysis of this two-dimensional
model is beyond the scope of this paper. However, we would expect more spatial and
spatiotemporal patterns compared to the one-dimensional case. The patterns are deter-
mined by the symmetries of the system, and in particular of the interaction kernels,
and they can be described in terms of the competition between odd and even wave
numbers (see also [3,4] for the treatment of a nonlocal two-dimensional problem).

Note that for the one-dimensional model, as well as for the two-dimensional ana-
logue, the symmetries of the system can restrict the form of the solutions, and the
amplitude equations (see, e.g., [17] for a general discussion on the subject, and [8] for
the description of ten generic instabilities of a one-dimensional model).

Returning now to the results obtained through weakly nonlinear analysis, it is known
that for subcritical bifurcations, the unstable branch obtained using a cubic amplitude
equation gives only qualitative information about the solution [10]. A more accurate
result can be obtained by adding higher-order terms to obtain a quintic amplitude equa-
tion. Moreover, far from the bifurcation point, one can only derive “phase equations”
to study the behavior of the solution. However, due to the complexity of our system,
as well as the type of questions we are addressing (that is, the effect of the social
interactions on the amplitude of spatial and spatiotemporal patterns), it is sufficient to
derive a cubic amplitude equation.

We used the bifurcation diagrams for the amplitude of the solutions to study the
effect of social interactions on the structure of the aggregations. As expected, increa-
sing inter-individual attraction leads to more compact stationary groups. This kind
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of behavior can be observed in schools of fish [6,42], when a nearby predator leads
to increased attraction towards neighbors which causes the group to form very tight
stationary aggregations. Alignment on the other hand, has dual effects, depending on
whether the group is stationary or moving. We have seen that in the case of stationary
groups with high individual turning rates, alignment has an aggregative effect, with the
groups becoming more dense. However, in case of moving groups, the effect of align-
ment is opposite: the density decreases as the groups become more elongated. When
alignment becomes very large, the groups disintegrate. Similar results regarding this
effect of alignment on moving groups were obtained with individual based models [29].

Moreover, the bifurcation diagrams show that there is a competition between the
turning behavior and the magnitude of the alignment interaction that leads to the for-
mation of stable aggregations. For example, in case of high turning rates the amplitude
of the perturbation required to destabilize the homogeneous solution decreases as ali-
gnment increases. In case of low turning rates, the situation is opposite: the amplitude
of the required perturbations decreases as alignment increases.

The subcritical bifurcation suggests that there is a threshold group density, such that
groups with densities below this threshold will disperse, while groups with densities
above this threshold will become even more dense and persist for a longer time. This
transition between the disordered behavior represented here by the homogeneous solu-
tion, and the ordered behavior represented by the high-density stationary or moving
groups, is particularly important for the area of animal group formation and move-
ment. It is known that some insect species (such as ants [2], or locusts [5]) exhibit
transitions between disordered and ordered activity behaviors, and these transitions
depend on animal density. For example, Buhl et al. [5] have shown experimentally
and numerically (using an individual-based model) that as the density of locusts in a
group increases, there is a transition from disordered movement to collective motion
of aligned groups. Understanding such transitions has potential applications to unders-
tanding and controlling the outbreaks of different insect pests, such as locusts.

In this paper, we have analyzed the patterns displayed by only one of the five
submodels described in [13]. It is possible that other patterns, corresponding to the
other four submodels, arise through supercritical bifurcations. However, this aspect has
not yet been investigated. Still, we can conclude that the subcritical bifurcations seem
to play an important role in the understanding of the effects of biological parameters to
the formation and persistence of certain animal groups (such as insects). A supercritical
bifurcation (i.e., bifurcation to a small, stable, amplitude solution) would suggest that
increasing a certain parameter would lead to the formation of denser, well coordinated
groups. This may be the case for some animal groups, but not necessarily for insects
like locusts or ants. A subcritical bifurcation, on the other hand, suggests the existence
of a density threshold below which well coordinated groups cannot persist. Moreover,
this type of bifurcation helps us connect the threshold for the total animal density
to different behaviors. More precisely, this threshold depends on different parameter
values which characterize different group behaviors.

To summarize, the results presented in this article are a first attempt to understand
the effects of the nonlocal social interactions on the resulting group patterns. Due
to the complexity of this model, we are still far from completely understanding the
dynamics of this hyperbolic system.
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Appendix 1: Model extension in two dimensions

A two-dimensional analogue of system (1) can be derived using a velocity-jump pro-
cess (see, e.g., [36,38]):

∂t u + γ eiφ∇x u = −λ(x, φ, t)u +
∫

λ(x, φ′, t)T (φ, φ′)u(x, φ′, t)dφ′. (55)

Here u is the total density, λ(x, φ, t) is the probability that a reorientation occurs at
(x, φ, t), and T (φ, φ′) is the probability of choosing φ′ the new direction, provided that
a reorientation occurs. These last two terms, λ(x, φ, t), and T (φ, φ′), are determined
by the assumptions we make about the communication mechanisms. Following the
same procedure as in [38], we can define

λ(x, φ, t) = λ1 + λ2h

⎛
⎜⎝

2π∫

0

∫

‖s−x‖≤sr

Kr (Dφ(s − x), θ − φ)dsdθ

+
2π∫

0

∫

‖s−x‖≤sa

Ka(Dφ(s − x), θ − φ)dsdθ

+
2π∫

0

∫

‖s−x‖≤sal

Kal(Dφ(s − x), θ − φ)dsdθ

⎞
⎟⎠ , (56)

and

T (φ, φ′) =
2π∫

0

∫

‖s−x‖≤sr

K̄r (Dφ(s − x), θ − φ, φ′ − φ)dsdθ

+
2π∫

0

∫

‖s−x‖≤sa

K̄a(Dφ(s − x), θ − φ, φ′ − φ)dsdθ

+
2π∫

0

∫

‖s−x‖≤sal

K̄al(Dφ(s − x), θ − φ, φ′ − φ)dsdθ + T0(φ
′ − φ)

(57)
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Here Dφ denotes the matrix

Dφ =
(

cos(φ) sin(φ)

− sin(φ) cos(φ)

)
, (58)

The kernels Ki (Dφ(s − x), θ − φ) > 0, i = r, a, al, with
∫

D Ki (Dφ(s − x),

θ − φ)dθ = 1, describe the repulsive, attractive, and alignment interactions that
trigger the turning. The kernels K̄i (Dφ(s − x), θ − φ, φ′ − φ) > 0, i = r, a, al, des-
cribe the social interactions that lead to the probability of choosing the new direction
φ′. If there are no individuals within the perception range, the new direction is given
by T0(φ

′ − φ). The kernels K̄i and T0 satisfy

2π∫

0

K̄i (·, ·, φ)dφ = 0,

2π∫

0

T0(φ)dφ = 1. (59)

The definition of these kernels depends on the assumptions we make about the different
communication mechanisms that take place in two dimensions.

To reduce this model to the previous one-dimensional case, we choose φ = ±π
2 .

In this case, the turning rates can be written as

�+ = h

⎛
⎜⎝

∫

‖x̄−x‖
Kr

(
D π

2
(s − x), 0

)
u

(
s,

π

2
, t

)

−Kr

(
D π

2
(s − x),−π

)
u

(
s,−π

2
, t

)
ds

+
∫

‖x̄−x‖
Ka

(
D π

2
(s − x), 0

)
u

(
s,

π

2
, t

)

−Ka

(
D π

2
(s − x),−π

)
u

(
s,−π

2
, t

)
ds

+
∫

‖x̄−x‖
Kal

(
D π

2
(s − x), 0

)
u

(
s,

π

2
, t

)

− Kal

(
D π

2
(s − x),−π

)
u

(
s,−π

2
, t

)
ds

⎞
⎟⎠ , (60)

�− = h

⎛
⎜⎝

∫

‖x̄−x‖
Kr

(
D− π

2
(s − x),−π

)
u

(
s,−π

2
, t

)

−Kr

(
D− π

2
(s − x), 0

)
u

(
s,

π

2
, t

)
ds
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+
∫

‖x̄−x‖
Ka

(
D− π

2
(s − x),−π

)
u

(
s,−π

2
, t

)

−Ka

(
D− π

2
(s − x), 0

)
u

(
s,

π

2
, t

)
ds

+
∫

‖x̄−x‖
Kal

(
D− π

2
(s − x),−π

)
u

(
s,−π

2
, t

)

− Kal

(
D− π

2
(s − x), 0

)
u

(
s,

π

2
, t

)
ds

⎞
⎟⎠ . (61)

Let u+(s, t) = u(s, π
2 , t), and u−(s, t) = u(s,−π

2 , t). Depending on the assumptions
we make about the kernels Ki , i = r, a, al, we can recover the different communi-
cation mechanisms introduced in [13]. For example, if Ki (y, 0) = 0, Ki (y,−π) =
−Ki (y, π), K̄i ≡ 0, and T0(±π

2 ) = 1, we can recover the communication mecha-
nism corresponding to model M5. If Ki (y, 0) = Ki (y,−π) �= 0, K̄i ≡ 0, and
T0(±π

2 ) = 1, we can recover the mechanism corresponding to model M4.
This reduction of the model suggests that some of the solutions of the

one-dimensional system can be thought as special solutions of the two-dimensional
model. However, a detailed description and analysis of this two-dimensional model is
the subject of future research.

Appendix 2: Existence of solutions for the hyperbolic system

The proof for the existence of solutions of system (1) uses the characteristic equations
of the hyperbolic system (1):

dζ+

ds
= γ,

dζ−

ds
= −γ. (62)

We denote ζ± = �±(s; x, t) as the solution of this ODE system, passing through
the point (x, t). If we set U±(s) = u(�±(s; x, t), s), we can rewrite the hyperbolic
system (1) as:

dU+

dt
(s; x, t) = −λ+(U+(s), U−(s))U+(s) + λ−(U+(s), U−(s))U−(s),

(63)
dU−

dt
(s; x, t) = λ+(U+(s), U−(s))U+(s) − λ−(U+(s), U−(s))U−(s).

Integrating (63) along the characteristics gives

U+(ζ+) = U+(ζ0) +
ζ+∫

ζ0

(−λ+(U+, U−)U+ + λ+(U+, U−)U−)
(y)dy, (64)
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U−(ζ−) = U−(ζ0) +
ζ−∫

ζ0

(
λ+(U+, U−)U+ − λ−(U+, U−)U−)

(y)dy. (65)

Note that, a pair of functions (u+, u−) which satisfies (64) and (65) is called a mild
solution of system (1).

We define the operator G(U+, U−) = (G1(U+, U−), G2(U+, U−)), where G1
and G2 are described by the two expressions on the right hand side of (64) and (65),
respectively. Then, finding a unique mild solution of (1) reduces to finding a fixed
point of the map (U+, U−) �→ G(U+, U−).

To prove the existence of a unique weak solution u± ∈ L∞(R ×[0,∞)) of system
(1), let us consider the Banach spaces X := L∞(R × [0, t0) ) with norm ‖u‖X :=
sup ‖u(·, t)‖∞, and X̄ := L∞(R). On X × X we have the norm ‖(u, v)‖X×X :=
max(‖u‖X , ‖v‖X ). We also define B = B(R, X) := {u ∈ X : ‖u(x, t)‖X ≤ R}.

Following the same steps as in [22,25], for all ω ∈ X , with ω±(0, ·) = u±
0 ∈

L∞(R), we consider the Cauchy problem

u+
t + γ u+

x = −λ+(ω+, ω−)ω+ + λ−(ω+, ω−)ω−,

u−
t − γ u−

x = λ+(ω+, ω−)ω+ − λ−(ω+, ω−)ω−, (66)

u±(0, x) = u±
0 (x).

We prove that the operator G defined by (64) and (65) is a contraction:

1. G : X R × X R �→ X R × X R (where X R is a closed subset of Banach space X )
2. For (ω+, ω−), (θ+, θ−) ∈ X R × X R , and 0 < ε < 1,

‖G(ω+, ω−) − G(θ+, θ−)‖X R×X R
≤ ε‖(ω+, ω−) − (θ+, θ−)‖X R×X R

.

To prove that G maps a closed subset of a Banach space into itself, we only have to
assume that u±

0 is bounded in ‖.‖X R
by a constant M∗. We then choose R ≥ M∗ + ε1,

for some ε1 > 0. For (ω+, ω−) ∈ B, with ω±(0, ·) = U±
0 , we have

‖G1(ω
+, ω−)‖X ≤ ‖U±

0 ‖X̄+
ζ+∫

ζ0

‖ (−λ+(ω+, ω−)ω++λ−(ω+, ω−)ω−)
(y)‖X dy

≤ M∗ + γ t0 R
(
supBλ+(ω+, ω−) + supBλ−(ω+, ω−)

)
.

Let K = supBλ+(ω+, ω−)+supBλ−(ω+, ω−), and choose t0 ≤ ε1
γ RK = T1 to obtain

the bound ‖G1(ω
+, ω−)‖X ≤ M∗ + ε1 ≤ R. A similar result holds for G2.

To prove the contraction condition, let us consider (ω+, ω−), (θ+, θ−) ∈ B, with
ω±(0, ·) = θ±(0, ·) = U±

0 . Then,
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‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X

=

∥∥∥∥∥∥∥

ζ+∫

ζ0

(
λ+(θ+, θ−)θ+ − λ+(ω+, ω−)ω+

+ λ−(ω+, ω−)ω− − λ−(θ+, θ−)θ−)
(y)dy

∥∥∥∥∥∥∥
X

= 1

2

∥∥∥∥∥∥∥
−

ζ+∫

ζ0

(
λ+(ω+, ω−) + λ+(θ+, θ−)

)
(ω+ − θ+)(y, t)dy

+
ζ+∫

ζ0

(
λ−(ω+, ω−) + λ−(θ+, θ−)

)
(ω− − θ−)(y, t)dy

+
ζ+∫

ζ0

(
λ+(θ+, θ−) − λ+(ω+, ω−)

)
(ω+ + θ+)(y, t)dy

−
ζ+∫

ζ0

(
λ−(θ+, θ−) − λ−(ω+, ω−)

)
(ω− + θ−)(y, t)dy

∥∥∥∥∥∥∥
X

. (67)

We assumed that the turning rates are locally Lipschitz continuous as functions of y±.
Let L± be the Lipschitz constants. Using (2), we obtain

‖λ±(ω+, ω−) − λ±(θ+, θ−)‖X×X

= ‖h(y±(ω+, ω−)) − h(y±(θ+, θ−))‖X×X

≤ L±(R)‖y±(ω+, ω−) − y±(θ+, θ−)‖X×X

= L±(R)‖
∞∫

0

(±qr Kr (s) ∓ qa Ka(s)) (ω(x ± s, t) − θ(x ± s, t) − ω(x ∓ s, t)

+ θ(x ∓ s, t)) ds ±
∞∫

0

qal Kal(s)
(
ω−(x + s, t) − θ−(x + s, t) − ω+(x − s)

+ θ+(x − s)
)

ds‖X

≤ L1,2(R) max(‖ω+ − θ+‖X , ‖ω− − θ−‖X )

= L1,2(R)‖(ω+, ω−) − (θ+, θ−)‖X×X . (68)
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Here L1,2(R) = L±(R)C(qr , qa, qal), where C(qr , qa, qal) is a constant that depends
on the magnitudes of the social interactions. Hence, λ± are locally Lipschitz conti-
nuous as functions of ω±, θ±, with L1(R) and L2(R) the Lipschitz constants. We
therefore have

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X

≤ 1

2

∣∣ζ+ − ζ0
∣∣ 2supBλ+(ω+, ω−)‖ω+ − θ+‖X

+1

2

∣∣ζ+ − ζ0
∣∣ 2supBλ−(ω+, ω−)‖ω− − θ−‖X

+1

2

∣∣ζ+ − ζ0
∣∣ ‖ω+ + θ+‖X L1(R) max(‖θ+ − ω+‖X , ‖θ− − ω−‖X )

+1

2

∣∣ζ+ − ζ0
∣∣ ‖ω− + θ−‖X L2(R) max(‖θ+ − ω+‖X , ‖θ− − ω−‖X ). (69)

Since ‖ω± + θ±‖X ≤ 2R, we obtain

‖G1(ω
+, ω−)−G1(θ

+, θ−)‖X×X ≤ γ t0 (K + L1(R)R

+ L2(R)R) ‖(ω+, ω−)−(θ+, θ−)‖X×X . (70)

Let us define T2 = ε2
γ (K+L1(R)R+L2(R)R)

, for some ε2 > 0, and choose t0 ≤ T2. We
then obtain

‖G1(ω
+, ω−) − G1(θ

+, θ−)‖X×X ≤ ε2‖(ω+, ω−) − (θ+, θ−)‖X×X . (71)

A similar estimate holds for G2. Then, for t0 ≤ min(T1, T2) we have

‖G(ω+, ω−) − G(θ+, θ−)‖X×X ≤ ε‖(ω+, ω−) − (θ+, θ−)‖X×X , (72)

which implies that G is a contraction. Therefore, G has a unique fixed point (u+, u−) ∈
X × X . Replacing ω± in (64) and (65) with U± results in:

‖U+(ζ+)‖X ≤‖U+(ζ0)‖X̄+

∥∥∥∥∥∥∥

ζ+∫

ζ0

(−λ+(U+, U−)U++λ−(U+, U−)U−) (y)dy

∥∥∥∥∥∥∥
X

,

‖U−(ζ−)‖X ≤‖U−(ζ0)‖X̄+

∥∥∥∥∥∥∥

ζ−∫

ζ0

(
λ+(U+, U−)U+−λ−(U+, U−)U−)

(y)dy

∥∥∥∥∥∥∥
X

,

and therefore,

‖U+‖X + ‖U−‖X ≤ ‖u+
0 ‖X̄ + ‖u−

0 ‖X̄

+2γ t0 (K + (L1(R) + L2(R))R)
(‖U+‖X + ‖U−‖X

)
. (73)
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Hence

‖U+‖X + ‖U−‖X ≤ 1

1 − ε
(‖U+

0 ‖X̄ + ‖U−
0 ‖X̄ ), (74)

which implies that u± ∈ L∞(R × [0, t0 )).
To prove the solution is defined for all time, it is enough to show that ‖U±‖X are

bounded on any bounded interval [0, T ]:
d

ds
‖U±(s, ·)‖L∞(R) ≤ ‖ d

ds
U±(s, ·)‖

L∞(R)

≤ ‖λ+(U+, U−)U+‖L∞(R) + ‖λ−(U+, U−)U−‖L∞(R)

≤ M2(‖U+‖L∞(R) + ‖U−‖L∞(R)), (75)

where M2 is the upper bound for λ±. Therefore

‖U+‖L∞(R) + ‖U−‖L∞(R) ≤ (‖U+
0 ‖L∞(R)

+ ‖U−
0 ‖L∞(R)

)eM2s . (76)

Since U±(t, ·) are bounded on any bounded interval [0, T ], the solution exists for all
time. ��

Note that on a bounded domain � = [0, L], if we assume that the initial data u±
0 (x)

is periodic, then the mild solution u±(x, t) ∈ L∞(� × [0,∞)) is periodic.

We should also mention that since d
dt

∞∫
−∞

(u+(x, t) + u−(x, t))dx = 0, it follows

that if the initial condition satisfies u±
0 ∈ L1(R), then u± ∈ L1(R).

Appendix 3: Detailed calculations for the weakly nonlinear analysis
in the neighborhood of a real bifurcation

At O(ε), we calculate u+
1 and u−

1 from

L(u1) = 0, (77)

where u1 = (u+
1 , u−

1 )T =α(T )veikcx + c.c., with v = (v1, v2)
T , and “c.c.” denoting

the complex conjugate terms. The components v1 and v2 are given by:

v1 = L1 − M5 K̂ +

γ ik + L1 + M5 K̂ + , v2 = 1. (78)

Here E1 = N1 = 0. At O(ε2), the nonlinear terms are E2 = 0, and

N2 =
(

u+
1 P1 K ∗ u1 + u−

1 P1 K ∗ u1

−u+
1 P1 K ∗ u1 − u−

1 P1 K ∗ u1,

)
, (79)
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where K = qr (K̃r − Kr ) − q0
a (K̃a − Ka), and K̃r,a(s) = Kr,a(−s). Actually, N2 can

be rewritten as

N2 = α2(T )e2ikcx Q(1) + |α|2Q(2) + c.c., (80)

with Q(1) = (Q(1)
1 , Q(1)

2 )T and Q(2) = (Q(2)
1 , Q(2)

2 )T . Equation L(u2) + N2 = 0 is
then solved for u2 = (u+

2 , u−
2 )T , where

u2 = α1(T )v0eikcx + α2(T )v(1)e2ikcx + |α|2v(2) + c.c., (81)

with v(1) = (v
(1)
1 , v

(1)
2 )T , and v(2) = (v

(2)
1 , v

(2)
2 )T satisfying the following two

equations

L2kc (v
(1)) + Q(1) = 0, (82)

L0(v(2)) + Q(2) = 0. (83)

Solving system (82) gives us

v
(1)
1 = −Q(1)

1

2γ ik + 2M5 K̂ +
2

, v
(1)
2 = v

(1)
1 . (84)

Here we define K̂ +
2 = qr (

ˆ̃K +
r (2kc) − K̂ −

r (2kc)) − q0
a (

ˆ̃K +
a (2kc) − K̂ −

a (2kc)). System

(83) reduces to one equation in two unknowns. To solve it for v
(2)
1 and v

(2)
2 , we have

to impose the conservation of the total density on the interval [0, L] = [0, 2π
kc

]. This

condition requires that v
(2)
2 = −v

(2)
1 . We therefore have

v
(2)
1 = −Q(2)

1

2L1
, v

(2)
2 = −v

(2)
1 . (85)

At O(ε3), the nonlinear terms are given by

E3 =
⎛
⎜⎝

du+
1

dT − (u∗ + u∗∗)P1ν
(
(K̃a − Ka) ∗ u1

)
du−

1
dT + (u∗ + u∗∗)P1ν

(
(K̃a − Ka) ∗ u1

)
⎞
⎟⎠ , (86)

and

N3 =
(

P1(K ∗ u1)u2+P1(K ∗ u2)u1+S1(u
+
1 −u−

1 )(K ∗ u1)
2+T1 A(K ∗ u1)

3

−P1(K ∗ u1)u2−P1(K ∗ u2)u1−S1(u
+
1 −u−

1 )(K ∗ u1)
2−T1 A(K ∗ u1)

3

)
,

(87)

where u1 = u+
1 + u−

1 , and u2 = u+
2 + u−

2 . At this step, secular terms can arise
if N3 + E3 contains terms of the form e±ikcx . To eliminate these secular terms, we
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impose the orthogonality condition (32). The solution W of the adjoint equation (30)
is given by

W1 = 1, W2 = γ ik − L1 − M5 K̂ −(kc)

−L1 − M5 K̂ −(kc)
. (88)

Then, the orthogonality condition can be written as

lim
T̂ →∞

1

T̂

T̂∫

0

2π
kc∫

0

(β1(T )Weikcx+β2(T )W̄e−ikcx )

(
R(1)α|α|2eikcx+R̄(1)ᾱ|α|2e−ikcx

+ R(2)α eikcxν + R̄(2)ᾱe−ikcxν + R(3) dα

dT
eikcx + R̄(3) dᾱ

dT
e−ikcx

)
dxdT = 0.

The coefficients R(j), j = 1, 2, 3, are described by

R(1)
1 = P1v̄v(1) K̂ − + P1vv(2) K̂ + + P1v̄v(1) K̂ +

2 + S1(v̄1 − v̄2)v
2(K̂ +)2

+ 2S1v̄v(v1 − v2)K̂ + K̂ − + 3T1 Av̄v2 K̂ −(K̂ +)2,

R(1)
2 = −R(1)

1 ,

R(2)
1 = −M5v(

ˆ̃Ka − K̂ +
a )(kc),

R(2)
2 = −R(2)

1 ,

R(3)
1 = v1,

R(3)
2 = v2. (89)

We define here v = v1 + v2, and v(1) = v
(1)
1 + v

(1)
2 . Since

∫ 2π
kc

0 e∓2ikcx dx = 0, we
obtain

W̄ · R(1)α|α|2 + W̄ · R(2)αν + W̄ · R(3) dα

dT
= 0, (90)

and its complex-conjugate

W · R̄(1)ᾱ|α|2 + W · R̄(2)ᾱν + W · R̄(3) dᾱ

dT
= 0. (91)

Equation (90) can be rewritten as

1

2

dα

dT
= −νYα − Xα|α|2, (92)
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with

X = W̄ · R(1)

W̄ · R(3)
Y = W̄ · R(2)

W̄ · R(3)
. (93)

The two steady-state solutions of this equation are |α|2 = 0 or |α|2 = −ν
�(Y )
�(X)

[see (39)]. To compare the results of the nonlinear analysis with the numerical results,
we substituteα into the expressions for u±

1 and derive a formula for the actual amplitude
of the spatial patterns:

max(u) − min(u) = ε(max(u+
1 + u−

1 )− min(u+
1 + u−

1 )) = ε4�(α(v1 + v2)). (94)

Appendix 4: Detailed calculations for the weakly nonlinear analysis
in the neighborhood of an imaginary bifurcation

The derivation of the amplitude equation for the case when the bifurcation of the
unstable branch occurs through an imaginary eigenvalue follows the same steps as
before. Here we consider only the case qr = qa = 0. The case when attraction and
repulsion are nonzero is similar, but the equations are more complicated. At O(ε) we
have

u1 = αveiωt+ikc x + c.c. (95)

where u1 = (u+
1 , u−

1 )T , v = (v1, v2)
T , and α = α(T ). At O(ε2), E2 = 0 and

N2 =
(
(u+

1 P1+u−
1 P2)q0

al Kal ∗(u−
1 −u+

1 )+(u∗S1−u∗∗S2)(q0
al)

2(Kal ∗(u−
1 −u+

1 ))2

−(u+
1 P1+u−

1 P2)q0
al Kal ∗(u−

1 −u+
1 )−(u∗S1−u∗∗S2)(q0

al)
2(Kal ∗(u−

1 −u+
1 ))2

)
.

After some calculations we can rewrite the nonlinear terms N2 + E2 as

N2 + E2 = α2e2iωt+2ikcx Q(1) + ᾱ2e−2iωt−2ikcx Q(2) + |α|2Q(3). (96)

Therefore, the solution of the nonlinear problem L(u2) = N2 + E2 can be written as

u2 = α1v0eiωt+ikc x + α2e2iωt+2ikcx G(1)
0 + ᾱ2e−2iωt−2ikc x G(2)

0 + |α|2G(3)
0 .

The constants G(j)
0 , j = 1, 2, 3, are calculated by requiring them to verify the following

equations:

L2ω,2kc G(1)
0 = −Q(1), L−2ω,−2kc G(2)

0 = −Q(2), L0,0G(3)
0 = −Q(3). (97)

The solution does not contain terms of the form e±iωt±ikc x and therefore the Fredholm
Alternative is satisfied. However, at O(ε3) we have to impose the orthogonality condi-
tion L∗(û) = 0. Let us define the solution of the adjoint homogeneous problem to be
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û = β1(T )Veiωt+ikc x + c.c. Then, the orthogonality condition becomes L̄T
kc

(û) = 0,
where

L̄T
kc

(u) =
⎛
⎝−iω − γ ikc + L1 + M5q0

al K +
al −L1 − M5q0

al K +
al

−L2 + M5q0
al K −

al −iω + γ ikc + L2 − M5q0
al K −

al

⎞
⎠ (98)

This leads to the amplitude equation (51), with the vector V given by

V1 = 1, V2 = iω + γ ikc − L1 + M5q0
al K̂ +

al

−L1 + M5q0
al K̂ +

al

. (99)

At O(ε3), we obtain the amplitude equation (51). The coefficients R(j), j = 1, 2, 3,
that appear in this equation are given by

R(1)
1 = v1,

R(1)
2 = v2,

R(2)
1 = (M5+2q0

al(u
∗∗−u∗)(u∗S1 − u∗∗S2))b1+(u∗∗ − u∗)e1 + 2q0

ale1 + q0
al J11b1

−q0
al(P1 − P2 − 4q0

al(u
∗S1 − u∗∗S2)b1),

R(2)
2 = −R(2)

1 ,

R(3)
1 = 2(u∗S1 − u∗∗S2)(q

0
al)

2(b1G(3)
0 + b̄1G(1)

0 ) + 3(u∗T1 + u∗∗T2)(q
0
al)

3(b1)
2b̄1

+q0
al(e1G(3)

0 + ē1G(1)
0 ) + (q0

al)
2( f̄1(b1)

2 + 2 f1b1b̄1) + q0
al(J1b̄1 + J9b1),

R(3)
2 = −R(3)

1 . (100)

We define here

b1 = K̂ +
alv2 − K̂ −

alv1, e1 = P1v1 + P2v2, f1 = S1v1 − S2v2,

J j = G( j)
1 P1 + G( j)

2 P2, j = 1 . . . 10,

G(1)
0 = G(1)

02
K̂ +

al (2kc) − G(1)
01

K̂ −
al (2kc), G(2)

0 = G(2)
02

K̂ −
al (2kc) − G(2)

01
K̂ +

al (2kc),

G(3)
0 = G(3)

02
− G(3)

01
. (101)

References

1. Aldana M, Dossetti V, Huepe C, Kenke VM, Larralde H (2007) Phase transitions in systems of self-
propelled agents and related network models. Phys Rev Lett 98(9):095,702

123



Weakly nonlinear analysis of a hyperbolic model 73

2. Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transitions between disordered and ordered
foraging in pharaoh’s ants. Proc Natl Acad Sci USA 98(17):9703–9706

3. Bressloff PC (2004) Euclidean shift-twist symmetry in population models of self-aligning objects.
SIAM J Appl Math 64:1668–1690

4. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2001) Geometric visual hallucina-
tions, euclidean symmetry and the functional architecture of striate cortex. Phil Trans R Soc Lond B
356:299–330

5. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder
to order in marching locusts. Science 312:1402–1406

6. Bullis HR (1961) Observations on the feeding behavior of white-tip sharks on schooling fishes. Ecology
42:194–195

7. Chaté H, Ginelli F, Grégoire G (2007) Comment on “phase transitions in systems of self-propelled
agents and related network models”. Phys Rev Lett 99:229,601

8. Coullet P, Ioos G (1990) Instabilities of one-dimensional cellular patterns. Phys Rev Lett 64(8):
866–869

9. Couzin ID, Krause J, James R, Ruxton G, Franks NR (2002) Collective memory and spatial sorting in
animal groups. J Theor Biol 218:1–11

10. Cross MC, Hohenberg PC (1993) Pattern formation outside equilibrium. Rev Mod Phys 65(3):
851–1112

11. Czirók A, Barabási AL, Vicsek T (1999) Collective motion of self-propelled particles: kinetic phase
transition in one dimension. Phys Rev Lett 82(1):209–212

12. Czirók A, Stanley H, Vicsek T (1997) Spontaneously ordered motion of self-propelled particles. J Phys
A Math Gen 30:1375–1385

13. Eftimie R, de Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal
communication mechanisms. Proc Natl Acad Sci USA 104(17):6974–6979

14. Eftimie R, de Vries G, Lewis MA, Lutscher F (2007) Modeling group formation and activity patterns
in self-organizing collectives of individuals. Bull Math Biol 69(5):1537–1566

15. Flierl G, Grünbaum D, Levin S, Olson D (1999) From individuals to aggregations: the interplay bet-
ween behavior and physics. J Theor Biol 196:397–454

16. Gazi V, Passino KM (2002) Stability analysis of swarms. In: Proceedings of American control confe-
rence on Anchorage, AK, pp 8–10

17. Golubitsky M, Stewart I, Schaeffer DG (1988) Singularities and groups in bifurcation theory, vol II.
Springer, Heidelberg

18. Grégoire G, Chaté H (2004) Onset of collective and cohesive motion. Phys Rev Lett 92(2):025,702
19. Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations.

J Theor Biol 182:85–98
20. Helbing D, Treiber M (1999) Numerical simulations of macroscopic traffic equations. Comput Sci Eng

1(5):89–98
21. Hillen T (1995) Nichtlineare hyperbolische systeme zur modellierung von ausbreitungsvorgängen und

anwendung auf das turing modell. PhD Thesis, Universität Tübingen
22. Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World

Appl 1:409–433
23. Huth A, Wissel C (1994) The simulation of fish schools in comparison with experimental data. Ecol

Model 75/76:135–145
24. Keener J (1988) Principles of applied mathematics. Addison-Wesley, Reading
25. Lutscher F (2002) Modeling alignment and movement of animals and cells. J Math Biol 45:234–260
26. Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell

systems. J Nonlinear Sci 12:619–640
27. Mallet-Paret J (1999) The fredholm alternative for functional differential equations of mixed type.

J Dyn Differ Equ 11(1):1–47
28. Matkowski BJ (1970) Nonlinear dynamic stability. SIAM J Appl Math 18:872–883
29. Mirabet V, Auger P, Lett C (2007) Spatial structures in simulations of animal grouping. Ecol Model

201:468–476
30. Mogilner A, Edelstein-Keshet L (1996) Spatio-angular order in populations of self-aligning objects:

formation of oriented patches. Physica D 89:346–367
31. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38:534–570
32. Murray JD (1984) Asymptotic analysis. Springer, Heidelberg

123



74 R. Eftimie et al.

33. Newell AC, Passot T, Lega J (1993) Order parameter equations for patterns. Annu Rev Fluid Mech
25:399–453

34. Niwa HS (1994) Self-organizing dynamical model of fish schooling. J Theor Biol 171:123–136
35. Okubo A, Grünbaum D, Edelstein-Keshet L (2001) The dynamics of animal grouping. In: Okubo A,

Levin S (eds) Diffusion and ecological problems: modern perspectives. Springer, New York,
pp 197–237

36. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:
263–298

37. Pfistner B (1990) A one dimensional model for the swarming behavior of Myxobakteria. In: Alt W,
Hoffmann G (eds) Biological motion, Lecture Notes on Biomathematics, vol 89. Springer, Heidelberg,
pp 556–563

38. Pfistner B, Alt W (1990) A two dimensional random walk model for swarming behavior. In: Alt W,
Hoffmann G (eds) Biological motion, Lecture Notes on Biomathematics, vol 89. Springer, Heidelberg,
pp 564–565

39. Reuter H, Breckling B (1994) Self organization of fish schools: an object-oriented model. Ecol Model
75(76):147–159

40. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. Comput Graph 21:
25–34

41. Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge
42. Springer S (1966) Some observations of the behavior of schools of fishes in the gulf of mexico and

adjacent waters. Ecology 38:166–171
43. Stuart JT (1960) On the nonlinear mechanism of wave disturbances in stable and unstable parallel

flows. part I. J Fluid Mech 9:353–370
44. Topaz CM, Bertozzi AL (2004) Swarming patterns in a two-dimensional kinematic model for biolo-

gical groups. SIAM J Appl Math 65:152–174
45. Topaz CM, Bertozzi AL, Lewis MA (2006) A nonlocal continuum model for biological aggregation.

Bull Math Biol 68:1601–1623
46. Vabø R, Nøttestad L (1997) An individual based model of fish school reactions: predicting antipredator

behaviour as observed in nature. Fish Oceanogr 6:155–171
47. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system

of self-driven particles. Phys Rev Lett 75(6):1226–1229

123


	Weakly nonlinear analysis of a hyperbolic modelfor animal group formation
	Abstract
	1 Introduction
	2 Hyperbolic model and the existence of solutions
	3 Spatially homogeneous steady states and linear analysis
	4 Nonlinear analysis
	4.1 Weakly nonlinear analysis in the neighborhood of a real bifurcation
	4.2 Numerical results for a real bifurcation
	4.3 Weakly nonlinear analysis in the neighborhood of an imaginary bifurcation
	4.4 Numerical results for the imaginary bifurcation

	5 Discussion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


